Psychological Preference-based Optimization Framework with Interactive Genetic Algorithms on the Nurse Scheduling Problem

نویسندگان

  • Ying-Shiuan You
  • Tian-Li Yu
  • Ta-Chun Lien
چکیده

One of the challenges of the nurse scheduling problems (NSPs) is the great number of constraints, and another challenge is that psychological preference of chief nurse is usually difficult to clearly define. Typically, solutions to conquer the first challenge rely on operational research (OR) methods, and the objective functions are constructed manually to conquer the second challenge. However, OR methods are usually time consuming and it is too strong an assumption that the constructed objective function is close to the psychological preference in chief nurses’ minds. This paper presents a psychological preference-based optimization framework (PPOF) with a guidable hill-climbing decoder (HCD) and the active interactive genetic algorithm (AIGA). The guidable HCD yields satisfactory performance in speed, and it reduces the highly-constrained search space to a constraint-less one which is easy for genetic algorithms to optimize. To meet the psychological preference, PPOF adopts AIGA to tune HCD to approximate the chief nurses’ psychological preference. The experiment shows that PPOF is able to arrange a feasible monthly schedule of a realistic NSP of the National Taiwan University Hospital within several seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JIT single machine scheduling problem with periodic preventive maintenance

This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, mult...

متن کامل

A knowledge-based NSGA-II approach for scheduling in virtual manufacturing cells

This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...

متن کامل

Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint

Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...

متن کامل

GENETIC AND TABU SEARCH ALGORITHMS FOR THE SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE-DEPENDENT SET-UP TIMES AND DETERIORATING JOBS

 This paper introduces the effects of job deterioration and sequence dependent set- up time in a single machine scheduling problem. The considered optimization criterion is the minimization of the makespan (Cmax). For this purpose, after formulating the mathematical model, genetic and tabu search algorithms were developed for the problem. Since population diversity is a very important issue in ...

متن کامل

Scheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms

This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010